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Abstract—The modeling of voltage and current sources as ei-
ther added or replaced sources in FDTD simulations is described
and their differences discussed in terms of a transmission line
analogy. An infinitesimal current element (ICE) is used to il-
lustrate the validation of added source modeling and to study
the errors involved with modeling an infinitesimal element within
the finite-sized FDTD grid. This model is also used to illustrate
the behavior of radiation boundary conditions as their near-field
position with respect to the source is varied. We characterize
the errors due to modeling and boundary conditions and give
guidelines for obtaining acceptable accuracy in simulations.

1. INTRODUCTION

HE FINITE-DIFFERENCE time-domain (FDTD)

method for solving Maxwell’s equations [1] has been
widely utilized in the analysis of scattering phenomena [2],
[3], radiation patterns from antennas [4]-[7] and biomedical
applications such as hyperthermia [8]-[11]. For all FDTD
applications, proper modeling of sources is essential.
However, other than for plane-wave sources [2], [3], FDTD
source modeling is not well documented, particularly for
current sources.

Voltage sources are typically modeled in FDTD formula-
tions by either of two methods: 1) replacing the calculated
electric field E on a Yee-cell edge by the source E at every
time step (“replaced source™), or 2) adding the source E to
the FDTD calculated E (“added source”). The replaced source
appears to be more commonly used, for example in exciting
coax [4] and waveguide structures [6]. but knowing which kind
of source to use is important because their effects on the system
are quite different. For example, replaced sources may cause
reflections of waves propagating back to the source location,
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while added sources can be transparent to these incoming
waves.

The purpose of this paper is to describe both voltage and
current added and replaced sources in the FDTD formula-
tion, to illustrate transparent source modeling using an added
infinitesimal current element (which has a known analytical
solution), to determine the extent of the region near this source
where errors arise due to the finite grid size, and to illustrate
the accuracy of radiation boundary conditions as a function of
distance from this nonplane-wave source.

The infinitesimal current element (ICE) source is a cur-
rent sinusoidally varying in time along a directed line of
infinitesimal length. Besides having a known solution for
validating code, the ICE is a useful source in its own right. It
can be employed, for example, either as a “building block™
member of a group of several elements that are weighted
with individual amplitudes and phases for modeling a general
distributed current source [12], or as a single element by
itself for such simulations as antenna feeds [6], radiating
dipoles or monopoles [6], [12], [13], or optical emission
from fluorescent molecules. The ICE is equivalent to an
infinitesimally short dipole of oscillating charge, or Hertzian
electric dipole [13], which has been widely used in numerical
methods other than FDTD for calculating radiation patterns
from such structures as microstrip patch antennas [14], [15]
and dipole antennas in complex environments [16]. Errors
near the source arise, however, when an infinitesimal current
element is modeled within the finite-sized FDTD grid. In later
sections, we characterize these errors and give guidelines for
obtaining acceptable accuracy in simulations.

Absorbing boundaries must be carefully located to keep
the model as small as possible to maximize efficiency while
maintaining acceptable accuracy. Mur [17] reported a two-
dimensional (2-D) study of the performance of radiation
boundary conditions (RBC) with nonplanar incident fields
from an added isotropic source. We extend that study to 3-
D using quantitative comparisons to the known analytical
solutions of the ICE and determine the conditions under
which the reflections from the boundaries are within acceptable
limits.

II. ADDED AND REPLACED FDTD SOURCES

As explained in the previous section, FDTD sources can
be added or replaced sources. The electric field excitation
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Lumped Transmission Line Analogy
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Fig 1 (a) The replacement of the FDTD electric field E by the source
field (E,) is analogous to placing a voltage source V, across a lossless
transmission line. Similarly, replacing a current density J by the source current
density (J,) is analogous to placing a current source I, in series with the
capacitor in a model of a lossless transmission line. Incoming waves will
be reflected by such sources. (b) The addition of the calculated electric field
E. to the source field (E,) is analogous to placing a voltage source V; in
series with the capacitor in a model of a lossless transmission line. Simularly,
adding the calculated current density J. to the source current density (J) is
analogous to placing a current source Is across a lossless transmission line.
These sources will appear transparent to incoming waves.

of a lossless lumped-element transmission line illustrates the
different nature of these two kinds of sources (Fig. 1). The
replacement of the FDTD electric field by the source field
(Fs) is similar to placing a voltage source (V, = E,§, where
6 is the cell size) across a capacitance in the transmission
line (Fig. 1(a)). The FDTD replaced current source is similar
to a current source (I,) in series with a capacitance of the
transmission line (Fig. 1(a)). With ideal sources (no internal
resistance), these voltage and current sources when deactivated
will appear as short and open circuits, respectively, to any
incoming waves, thus causing reflections. On the other hand,
adding the calculated FDTD electric field (E.) to the source
field (F,) is similar to placing a voltage source (V) in
series with a capacitance of the transmission line, as shown
in Fig. 1(b). The FDTD added current source is similar to a
current source (I,) in parallel with a capacitance of the the
lossless transmission line. These sources, which result in a
series combination of an ideal voltage source for the lossless
transmission line (V. + V) or the parallel combination of an
ideal current source (I, + I,), will appear transparent (when
deactivated) to incoming waves.

Modeling FDTD voltage sources is straightforward because
the electric field E appears explicitly in the standard FDTD
equations and how to add to or replace E with a source E
is obvious. Modeling FDTD current sources is perhaps not
so obvious because current is usually not explicitly included
in the FDTD equations. Where should the current source be
placed in the Yee cell, and how should the current source be
included in the FDTD equations? We found that the best way
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Fig. 2. (a) The FDTD representation of the integral form of Maxwell's
V x H equation is shown. The current enclosed by the loop of H fields is equal
to the current density J. multiplied by the area 616y. (b) The FDTD average

current density J s is used to represent the current element Id! averaged over
the FDTD volume §xdydz.

to model an added current source in the FDTD formulation is
to locate it on the edge of a Yee cell (Fig. 2(a)) and to add it to
the current density J in Maxwell’s V x H equation. Starting
with the integral form of the V x H equation,

/H.dl:/J.ds+/ng.ds,

we set J = oE + J,, where J, is the z-directed source
current density averaged over the entire FDTD source cell.
The familiar FDTD equation with one additional source term,
C18J, is then obtained by integrating around the path shown
in Fig. 2(a)
BT, 5. k) = OLEL (i, 5. k) + Co[HPO2(i, 5 — LK)
= HO%(i, 5, k) + Hy "2 (i j, )
_H;+05(i—1ﬂjak)+6']s]v (1)
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Other FDTD expressions are unaffected by the current source.

III. THE INFINITESIMAL CURRENT SOURCE MODEL

The ICE is a good test case for validating the current-source
model because of its readily available analytic solution. First
the quantity Id/ used in the ICE analytical solution must be
related to the source current density J,. The expression for
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the vector potential A generated by an infinitesimal current
element is [13]
_op AV p 1dl
T 4w R

T 4w v @
where the integration is over the volume containing the source,
R is the distance from the point of the field A to each source
point, and r is the distance from the field point to the center of
the source volume, where the current element is located (Fig.
2(b)). To model this current source using the FDTD method,
we employ a z-directed current density J, centered along the
edge of one Yee cell, as shown in Fig. 2(b). In the FDTD
formulation, where quantities are assumed uniform within a
cell dimension,

3

J.dV'  Jbxbydz
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where 6z, 8y, and 6z are the cell dimensions, and R =~ r for

R > \/(63)2 + (6y)% + (62)2. Using (3) in (2), the FDTD

source current density J; is related to the infinitesimal current
element Idl by

1dl

s = Sk

“4)
It can be expected that this representation will be limited in
accuracy near the source since the approximation in (3), a
consequence of the finite-sized nature of FDTD cells, is less
valid as the source is approached. The distance at which the
approximation leads to significant errors is investigated in the
next section.

IV. ERRORS NEAR THE SOURCE AND BOUNDARIES

To study errors related to this source model, and also to the
proximity of the absorbing boundaries, the ICE source was
placed at the center of the free-space region shown in Fig.
3 and employed as an added source in (1). The region was
subdivided into cubic Yee cells of the same size as the cell
containing the source. Absorbing boundary conditions (2nd-
order Mur [17] with special corner boundary conditions [3])
were used on the outside boundaries of the region. Points
for comparison to analytical results were selected along three
paths, each beginning at the source and terminating at the
face, edge, and corner boundaries respectively. For each point
of comparison. the magnitudes of the FDTD electric and
magnetic field components were plotted with respect to time to
ensure that the steady state had been reached. Because FDTD
calculations give transient solutions, the turn-on characteristic
of the source strongly affects the FDTD results and sometimes
produces dc offsets and/or transients that delay the reaching of
the steady-state response. We tested different time functions
for the source waveform and found that using r(t)sinwt,
where r(t) = 0.5[1 — cos(wt/2a)] is a raised cosine envelope
for ¢t between 0 and o [18], produced the minimum amount
of transients and no dc offset. Therefore we used a raised
cosine envelope waveform for all simulations.

An IBM 3090-6000 computer was used for all FDTD
calculations and an HP 9000-850 computer was employed for
data display and analysis. A typical run time to reach steady
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Fig. 3. The ICE source is placed at the center of a free-space region
subdivided into Yee cells, each having volume 6°. Points for comparison
to the analytical results are chosen along three paths, each beginning at the
source cell and terminating at the face, the edge, and the corner.
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Fig. 4. The relative error 1n E, along the face path vs. the distance from
the source in wavelengths is shown. Plots are given for four different cell
sizes. The overall size of the region is held constant; thus the number of cells
in the region varies accordingly. For clarity of presentation, not every cell
point is plotted.

state for our vectorized code with a 60 x 60 x 60 model was
286 cpu seconds.

The analytical results [13] were compared to those obtained
with the FDTD simulation as a function of distance from the
source normalized to wavelength. Percent relative error was
defined as

100[(Eanalytical - Esimulatlon)/Eanalytical]7

where the clectric field magnitudes are steady-state peak-to-
peak values. The relative errors in £, and E, (equal to £,
by symmetry) are plotted in Figs. 4-6 as a function of the
distance from the source along the three paths. Fig. 4 shows
the relative error in F, as a function of distance along the
face path for four different cell sizes but for a constant overall
model size of approximately one wavelength on each side.
Fig. 5 shows relative errors in F, and FE, as a function of
position along the face and corner paths for a fixed cell size
of 0.0 083A. In Fig. 6, relative errors in F, are shown along
the face path for four different boundary positions (i.e., for four
different model sizes); cubic models with (20)3, (30)3, (60)3,
and (120)3 cells of the same cell size (0.0167)) were utilized
for this comparison.
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Fig. 5. The relative errors in E. and E, are shown along the face and
corner paths vs. the distance from the source in wavelengths for a cell size
of 0.0 083A.
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Fig. 6. The relative error in E; is shown along the face path vs. the distance
from the source in wavelengths for four locations of the boundaries. The plots
are for a (20)% cell model, a (30)3 cell model, a (60) cell model, and a
(120)3 cell model, each with a cell size of 0.0167A. The face boundary
location for each case is indicated.

V. DISCUSSION OF RESULTS

For the simulations shown in Fig. 4, the boundaries were
kept at a fixed distance (0.5)) from the source as the cell
size was changed. This was done to determine the ICE source
model accuracy near the source as a function of cell size, and
to study reflections from the RBC’s. Note that errors in I,
near the face boundary are small regardless of cell size. Note,
however, that cell size significantly affects the accuracy of the
results near the source. As the cell size decreases, the region
of appreciable error around the source shrinks, but even for
small cell size, accuracy immediately adjacent to the source
is still poor. This is understandable since the FDTD method
calculates only the spatially averaged field values for each Yee
cell, and the rapid variation of the fields near the infinitesimal
current element cannot be adequately modeled with finite cell
dimensions. As the cell size is made smaller, this region of
high error shifts closer to the source. For convenience of
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comparison, we defined a ten-percent relative error point. This
point can be seen to occur at about six cells from the source
for cell sizes of 0.0 167X and 0.0 083X (slightly closer for § >
0.0 333X). We have found that as cell size is decreased even
more (not shown), this ten-percent error point will shift closer
to the source in terms of wavelengths but will never get closer
than approximately six cells.

In Fig. 5, the error near the source is larger for the face
path than for the corner path; this is understandable since the
analytical result for an ICE source shows more rapid spatial
variation in the fields along the face path than along the corner
path near the source. At the face boundary (normal to the z-
direction), the F/, field component has a larger relative error
than the F, component. This is not surprising since the Mur
boundary conditions, which were developed to minimize the
reflections of normally incident waves, minimize the error of
E, at the face boundary. At the corner, the order is reversed,
with E, having the larger relative error. The edge path errors
(not shown) for E, and E., were each found to be a few
percent below the respective extremes of F, at the face and
E, at the corner.

Fig. 6 shows an increase in the relative error along the
face path as the boundaries are placed closer to the source
in terms of wavelengths. It demonstrates that the plane-wave
behavior assumed in the RBC’s is increasingly invalid for
boundaries located in the near field closer than about 0.5\
to the source. High boundary errors for the closer boundary
locations (i.e., 0.167) and 0.250)\) were also seen along the
edge and corner paths (results not shown). We found that
placing the boundaries further than 0.5\ from the source
reduces these errors at the boundaries.

Fig. 6 also shows that the results immediately adjacent to the
source are not changed significantly by the closer proximity
of the boundary. The lack of interaction between the boundary
location and the source is indicative of a transparent (added)
source. Otherwise, it is expected that the reflections caused by
the boundaries would have had a more noticable effect on the
results immediately adjacent to the source.

V1. SUMMARY AND CONCLUSION

We found that the ICE model is valid in FDTD simulations
at distances of about six cells or more from the source,
independent of cell size (assuming, of course, the conventional
limit of § < A/10). Closer in than six cells, however, the
rapidly varying fields immediately adjacent to the source
were difficult to accurately model. This is apparently due to
the fact that the FDTD method inherently models a current
density which is uniformly distributed throughout a source cell
volume, while the analytical expressions are for a precisely
located infinitesimal element, leading among other things to a
difference between the magnitudes of R and r in (3). Reduc-
tion of the cell size shifts the error curve physically closer to
the source, but our studies indicate that the point of ten-percent
error is not closer than approximately six cells from the source
for small cell sizes. Within this limitation, the ICE source can
be used with confidence in FDTD applications. For general
current sources where the current is distributed over finite
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dimensions, the above limitation may be eased, but that part
of the error which results from the FDTD method’s inability
to model rapidly varying fields over distances comparable to
the cell size will remain.

The errors near the boundary substantially increased when
the boundaries were placed closer than about one-half wave-
length from the infinitesimal current element source. This
increased error is consistent with the findings in the 2-D
study by Mur [12] using an isotropic source. Placement of the

boundaries further than this one-half wavelength point results

in a significant reduction of the errors at the boundaries. For
some models, however, it may be inconvenient or impossible
to place the boundaries one-half wavelength away due to
computer memory limitations. This applies to large-area or
low-frequency simulations at high resolution, e.g., treatment-
planning models for regional heating hyperthermia devices
[9], [19]. It is therefore important that work continues on
the development of improved boundary conditions and new
algorithms which incorporate variable cell sizes [20] and
shapes [21], [22] to allow more efficient use of computer
resources.
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